Up-regulation of inducible nitric oxide synthase expression in cancer-prone p53 knockout mice.

نویسندگان

  • S Ambs
  • M O Ogunfusika
  • W G Merriam
  • W P Bennett
  • T R Billiar
  • C C Harris
چکیده

High concentrations of nitric oxide (NO) cause DNA damage and apoptosis in many cell types. Thus, regulation of NO synthase (NOS) activity is essential for minimizing effects of cytotoxic and genotoxic nitrogen oxide species. We have shown previously that NO-induced p53 protein accumulation down-regulates basal and cytokine-modulated inducible NOS (NOS2) expression in human cells in vitro. To further characterize the feedback loop between NOS2 and p53, we have investigated NO production, i.e., urinary nitrate plus nitrite excretion, and NOS2 expression in homozygous p53 knockout (KO) mice. We report here that untreated p53 KO mice excreted 70% more nitrite plus nitrate than mice with wild-type (wt) p53. NOS2 protein expression was constitutively detected in the spleen of untreated p53 KO mice, whereas it was undetectable in the spleen of wt p53 controls. Upon treatment with heat-inactivated Corynebacterium parvum, urinary nitrite plus nitrate excretion of p53 KO mice exceeded that of wt controls by approximately 200%. C. parvum treatment also induced p53 accumulation in the liver. Splenectomy reduced the NO output of C. parvum-treated p53 KO mice but not of wt p53 controls. Although NO production and NOS2 protein expression were increased similarly in KO and wt p53 mice 10 days after injection of C. parvum, NOS2 expression returned to baseline levels only in wt p53 controls while remaining up-regulated in p53 KO mice. These genetic and functional data indicate that p53 is an important transrepressor of NOS2 expression in vivo and attenuates excessive NO production in a regulatory negative feedback loop.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

Effect of 17-? Estradiol on the Expression of Inducible Nitric oxide Synthase in Parent and Tamoxifen Resistant T47D Breast Cancer Cells

Indirect evidence suggests that estrogen is involved in the etiology of breast cancer. Estrogen is also thought to modulate nitric oxide (NO) in human breast tumor tissue via regulation of inducible nitric oxide synthase (iNOS). Objectives of this study were to determine whether estradiol (E2) affects iNOS expression level in breast cancer cells and to study the effect of various concentrations...

متن کامل

EXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS

Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...

متن کامل

Interactions between inducible nitric oxide and other inflammatory mediators during Helicobacter pylori infection.

BACKGROUND Recent studies in both humans and animal models strongly suggest the contribution of the host immune response to Helicobacter pylori-related disease. Inducible nitric oxide synthase has been shown to be up-regulated in the gastric epithelium during H. pylori gastritis, suggesting a role in inflammation. MATERIALS AND METHODS C57BL/6 wild-type and inducible nitric oxide synthase gen...

متن کامل

The Effect of Dexamethasone on Expression of Inducible Nitric Oxide Synthase Gene During Liver Warm Ischemia-reperfusion in Rat

Background: Liver ischemia / reperfusion Injury (IRI) is one of the major causes of liver failure during various types of liver surgery, trauma and infections. The present study investigates the effect of dexsamethasone on the liver injury and inducible nitric oxide synthase gene expression during hepatic warm ischemia/reperfusion in rats. Materials and Methods: 24 male Wistar rats (200-250 g)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 15  شماره 

صفحات  -

تاریخ انتشار 1998